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Hippocampal representations that underlie spatial memory undergo continuous
refinement following formation'. Here, to track the spatial tuning of neurons
dynamically during offline states, we used a new Bayesian learning approach based
onthe spike-triggered average decoded positionin ensemble recordings from freely
moving rats. Measuring these tunings, we found spatial representations within
hippocampal sharp-wave ripples that were stable for hours during sleep and were
strongly aligned with place fields initially observed during maze exploration.

These representations were explained by acombination of factors thatincluded
preconfigured structure before maze exposure and representations that emerged
during 0-oscillations and awake sharp-wave ripples while on the maze, revealing

the contribution of these events in forming ensembles. Strikingly, the ripple
representations during sleep predicted the future place fields of neurons during
re-exposure to the maze, even when those fields deviated from previous place
preferences. By contrast, we observed tunings with poor alignment to maze place
fields during sleep and rest before maze exposure and in the later stages of sleep.
Insum, the new decoding approach allowed us to infer and characterize the stability
and retuning of place fields during offline periods, revealing the rapid emergence of
representations following new exploration and the role of sleep in the representational

dynamics of the hippocampus.

Memories are continuously refined after they form. Different stages
of sleep have important roles in the transformations that memories
undergo, but many aspects of these offline processes remain unknown.
Memories that involve the hippocampus are particularly affected by
sleep, which alters molecular signalling, excitability and synaptic con-
nectivity of hippocampal neurons®*, Memories are considered to be
represented by the activity of ensembles of neurons that form during
experience®. In the rat hippocampus, these ensembles are tuned to
locations in amaze environment®. Indeed, an animal’s position can be
decoded fromthe spike trains recorded from a population of neurons®
(Fig. 1a). Spatial representations, however, do not remain stationary
following initial formation. In many cases, the place fields (PFs) of hip-
pocampal neurons develop and shift during traversals of an environ-
ment’®, remap upon exposure to different arenas’ and reset or remap
evenwithrepeated exposure to the same place'°. This presents a chal-
lenge to traditional decoding approaches that rely on the assumption
that hippocampal neurons always represent the same maze positions
astheydoinaspecific behavioural session”, including mazes that the
animal has yet to experience’.

We conjectured that modifications of spatial representations would
take place during sleep when connections between some neurons are
strengthened while those between other neurons are weakened>".
Consistent with this conjecture, cells that become active in anew envi-
ronment continue to reactivate for hours during sharp-wave ripples

in sleep™, suggesting that offline processes during sleep involve the
spatial representations of hippocampal neurons. Moreover, the col-
lective hippocampal map of space shows changes following sleep”
and some cells express immediate early genes during this period that
can mark them for sleep-dependent processing'®. However, although
spatial representations are readily measured from the spiking activi-
ties of neurons when animals explore a maze environment, access to
these non-stationary representations is lost when animals cease explor-
ing, making it challenging to evaluate how spatial representations are
shaped over time.

Toevaluate and track the spatial preferences of aneuronacross online
and offline periods, we developed a new method based on Bayesian
learning" (Fig. 1b,c). Under the assumption of conditional independ-
ence of Poisson spike counts from hippocampal neurons conditioned
on location, we derived the Bayesian learned tuning (LT) of a neuron
fromthe spike-triggered average of the posterior probability distribu-
tion of position determined from the simultaneous spiking patterns of
allother neuronsinthe recorded ensemble, including for time periods
when animals were remote from the maze locations for which position
was specified. In this formalism, the internally generated preference
of aneuron foralocationisrevealed through its consistent coactivity
with other neuronsinthe ensemble associated with that position. These
Bayesian LTs allowed us to track the place preferences of neurons as
they evolved in exceptionally long-duration (up to 14 h) hippocampal
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Fig.1|Bayesianlearning of hippocampal spatial tunings during offline
states. a, Hippocampal place cells show tuning to specific locations (PFs) on
alinear track maze. When animals sleep or rest outside the maze, the spiking
ofthese neuronsis nolonger driven by maze locations, x, but may represent
internally generated simulations of x or other locations. b, We used Bayesian
learning to assess each neuron’s tuning p’(spike|x) for internally generated
cognitive space, x, using the PFs of all other neurons recorded on the maze,
under the assumption of conditionalindependence among Poisson spiking
neurons conditioned on space (Methods). Top left: sample spike raster during
an example maze traversal. Top right: spiking patterns of the same cells during
abriefwindowinsleep.For eachiteration, one cellisselected asthelearning
neuron. Bottom left: population activity extracted for time binsin which the
learning neuron spikes. Bottom middle: next, posterior probability (prob.)
distributions are constructed using the spikes and track tunings of the other

unit recordings, enabling us to identify those periods and events in
which the firing activities of neurons were consistent or inconsistent
with PFs onthe maze and to characterize the plastic offline changesin
tuning relative to the broader ensemble.

Spatial tunings post maze align with maze PFs

We first examined how tuning curves are affected by an animal’s expe-
rience on a maze by characterizing the representations of neurons
fromspike trains recorded from the rat hippocampusin experiments
in which rest and sleep in a home cage both preceded (PRE) and fol-
lowed (POST) exposure to a new track (MAZE), in which rats ran for
water reward. To examine spatial tunings in each brain state separately,
we first separated unit and local field potential data recorded from
hippocampal region CAl into different states using general criteria
(Methods) for rapid eye movement (REM) sleep (sleep featuring
prominent hippocampal 0-oscillations), ripple periods during rest
and sleep (150-250 Hz band power accompanied by high multi-unit
firing rates), slow-wave sleep (SWS) periods exclusive of ripples and
active wake (with prominent 0-oscillations). We calculated PFs and
the LTs for each epoch for all pyramidal units with peak spatial fir-
ing rates >1 Hz on the maze (Fig. 2a-c). We limited the initial analysis
to the first 4 h of POST, during which we expect greater similarity to
maze firing patterns™. LTs showed a wide distribution of fidelity to
PFs from PRE to POST depending on brain state. Population vector
correlations between spatial bins in PFs and LTs (Fig. 2b) and LT-PF
Pearson correlation coefficients (Fig. 2c) demonstrated that the high-
est fidelities to PFs were observed in spatial representations during
0-oscillations and ripples on the maze, as expected®**°. However,
among offline periods only spatial tunings evidenced during POST,
particularly those during ripples, showed significant correlations

neurons during these time bins. Max., maximum. Bottom right: the Bayesian LT
p’(spike|x)is equal to the summation of the posterior distributions over these
timebins (3. p(x|spike)), normalized by the overall likelihood of each track
location (z p(x)) obtained across the entire offline period. ¢, Example tunings
derived fromsingleripple eventsrecorded duringrest and sleep inthe home
cage following maze exposure. For each offline ripple event, shown are the
spike raster (left) with ripple band signal above, tunings learned for each unit
fromtheraster (middle) and the PFs on the maze (right). Although, in principle,
tunings canbederived fromindividual events, in practice they are best
evaluated by combining across multiple ripple events (Extended Data Fig. 1).
Scalebars, 50 cm (a) and1s (b). Drawings of ratsinaby E. Ackermann,
reproduced from https://github.com/kemerelab/ratpack/under a Creative
Commonslicence CCBY-SA4.0.

with unit PFs in MAZE, and notably not those during PRE. LTs that
exhibited fidelity to MAZE PFs could be composed from individual
ripple events (Fig. 1c) butimproved by averaging over multiple events
(Extended Data Fig.1). These differences were not due to differences
inthe proportion of timeinrest versus sleep orin the number of active
firing bins (Extended Data Fig. 1c). The fidelity of LTs further varied
during SWS; tunings derived from ripples during periods of high
6-oscillation (0.5-4 Hz) and high spindle (8-16 Hz) power exhibited
higher PF fidelities compared to those from periods with low power
(Extended DataFig.2a-c). Notably, we observed weak but significantly
aligned representations consistent with the maze during POST REM
sleep, whenvivid dream episodes are frequently experienced?. These
representations were best aligned at the trough and descending phase
of REM 6-oscillations (Extended Data Fig. 2f), which may reflect that
only specific time windows during REM sleep correspond to previous
experience®. Overall, these findings provide a measurement of the
temporal variations in hippocampal ensemble firing patterns and
indicate that neurons maintain internal tunings consistent with their
PFs on the maze primarily during ripples in POST SWS.

Spatial representations are more stable post maze

We next tracked the LTs of neurons over time and examined the
consistency of their place preferences in different epochs. We cal-
culated LTs from all ripple events in 15-min windows sliding in 5-min
steps during each session, from PRE through MAZE and the first 4 h
of POST. Sample unit tunings from a recording session are shown in
Fig. 3a (additional examples are provided in Extended Data Fig. 3).
These examples show stable LTs for successive time windows during
POST, and in some instances also during PRE. To quantify the overall
stability of LTs for each unit, we used Pearson correlation coefficients
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Fig.2|Bayesian LTs during MAZE and offline states. a, PFs of hippocampal
units pooled across sessions (n =660 units from15sessions and 11 rats)
alongside Bayesian LTs calculated separately for each behaviouralepoch

(PRE, MAZE and POST) and brain state (ripples in SWS and quiet wake (QW),
non-ripple SWS, REM and active home cage). Blanks reflect instances without
neuronal firing for the specified state and epoch (for example, no REM activity
in PRE). Only tunings learned on the MAZE and POST bear a visual resemblance
to PFs, particularly those during ripples. b, The LT-PF correlations of the
population vectors (PVs) across space calculated between PFs and each set of
LTsina.c, Cumulative distributions of PF fidelity for each set of LTs ina, defined
as Pearson correlation coefficients between the LTs and PFs (LT-PF fidelity),

to assess the consistency of the LTs across time windows within and
betweenbehavioural epochs (Fig.3b). High off-diagonal values in the
correlation matrices within an epoch indicated that the LT remained
stable during that epoch. For the example units in Fig. 3a, we com-
pared the median LT stability values from each epoch against shuffle
distributions generated by randomizing the unit identities of the LTs
ateachtimewindow (Fig.3c). This z-scored LT stability was >0 in both
PRE and POST in this session (Fig. 3d) and for data pooled across all
sessions (Fig. 3e), but it was significantly higher in POST compared
to PRE, revealing that POST sleep representations were more stable
than those in PRE. When we measured the LT stability across time
windows from PRE and POST epochs, to examine their consistency
from before to after the new maze exposure when PFs first form, the
PRE with POST LT stability was not significantly greater than O in the
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1
LT—F’F fldellty
compared to null distributions obtained from unit-identity shuffles
(grey, butoccluded in many instances). Individual session medians (dots)
and corresponding interquartile range (horizontal lines) are overlaid and
colour-coded by dataset (Grosmark, Giri, and Miyawaki). Only tunings learned
onthe MAZE and POST exhibited significant median fidelities compared
(one-sided) to null distributions obtained from 10* unit-identity shuffles
(PRE:SWSripples P=0.24, quiet wake ripples P=0.93, non-ripple SWSP=0.17,
REM P=0.53, active home cage P=0.21; MAZE: 8-oscillations P<107*, quiet
wakeripples P<107*; POST: SWSripples P<10™*, quiet wakeripplesP<107%,
non-ripple SWSP=0.04, REMP=0.02,active home cage P=0.12; seealso
Extended DataFig.2).*P<0.05,***P<0.001.

example session (median = 0.65, P=0.16), rose to significance in the
pooled data (P<107*, Wilcoxon signed rank test (WSRT, n = 660)), but
remained significantly lower than the stabilities observed within PRE
and POST (PRE versus PRE with POST: P <107*; POST versus PRE with
POST:P<107*, WSRT (n = 660)), thus signalling that only a small minor-
ity of units maintained the same consistent spatial tuning from before
to after maze exposure.

A subset of units showed remarkably stable LTs during PRE, which
compelled us to consider whether the LTs of those units might show
higher fidelity with maze PFs. To test this conjecture, we divided units
into ‘stable’ and ‘unstable’ on the basis of whether their z-scored LT
stability was greater or less than 2 (PRE: 371 stable versus 289 unsta-
ble; POST: 454 stable versus 206 unstable), respectively, in both
PRE and POST (Fig. 3f). In POST, units with both stable and unstable
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Fig.3|Stability of LTs during ripplesin PREand POST. a, Heat maps of

LTs exclusively during ripples for sample units insliding 15-min windows
(hypnogramontop leftindicates quiet wake, active wake (AW), REM sleep and
SWSstates) from PRE to POST (maze PFsingrey, vertical onright) show stable
LTs during POST. Units 5 and 6 show stable tunings during PRE ripples that
donotalignwith their maze PFs.b, The matrix of LT correlation coefficients
across time for unitsin a. c, Stability of the LTs (black) for unitsina, defined as
the median of the correlation coefficient between LTs from non-overlapping
15-minwindows. Violin plots (grey) show chance distributions obtained from
non-identical units randomly scrambled across windows (1,000x). Although
LTs of units 5and 6 were stable in PRE and POST, they were not consistentacross
these epochs.d,e, Unit LT stabilities z-scored against unit-identity shuffles

LTs showed significant PF fidelity (P <10™*, comparison against 10*
unit-identity shuffles). However, the PF fidelity of units with stable
LTs was significantly higher compared to that of units with unstable
LTs in POST. By contrast, in PRE there was no significant difference
between PF fidelities of stable and unstable units, and neither of these
subsets showed significantly greater PF fidelity compared to a sur-
rogate distribution obtained by shuffling unit identities (PRE stable
LTs: P=0.06; PRE unstable LTs: P=0.35; POST stable LTs: P<1x107%;
POST unstable LTs: P=2 x 107*). Next we tested whether the subset
of ripple events in PRE that featured high replay scores (Extended
DataFig. 4 and Supplementary Information) might show better PF
fidelity. Even so, we found little alignment between maze PFs and
LTs constructed from these events. These findings demonstrate that

POST

weressignificantly greater than O for the sample session (PRE: median =2.51,
P=3.9x107%;POST: median=13.78, P=2.8 x10*; PRE with POST: median = 0.65,
P=0.16; two-sided WSRT (n=77)) withindividual units shown as dots (d), and
allsessions pooled together (PRE: median =2.47, P= 4.4 x10"%; POST: median =
3.10,P=4.6 x107%; PREwith POST: median = 0.95, P=1.1x10""; two-sided
WSRT (n=660); e). Overall, LT stability was higher in POST thanin PRE (P= 0.02)
orbetween PREwith POST (P<1.9 x107%; two-sided WSRT (n = 660)). Median
values fromindividual sessions overlaid and colour-coded by dataset.

f, Distributions of PF fidelity (r(LT, PF)) for units with stable (z > 2) versus
unstable (z<2) LTs showed no difference in PRE (P=0.29) but were higher for
stable unitsin POST (P=2.1x107"; two-sided Mann-Whitney U-test (n = 660)).
NS, notsignificant; *P < 0.05; ***P< 0.001.

although some units in PRE exhibit stable learned spatial tunings, these
tunings do not typically anticipate their future PFs, but rather show a
broad distribution of alignments with the maze place preferences. By
contrast, LTs constructed from low-replay-score events from POST
showed strong fidelity to maze PFs, despite the absence of sequen-
tial trajectories in low-score events (Supplementary Information and
Extended Data Fig. 4). Thus, events that would typically be classified
as non-replays in POST maintain representations that are faithful to
the maze PFs.

Although the stability and fidelity of spatial tunings were significantly
greater in POST, these features did not lastindefinitely. In our data that
involved several hours of POST, we observed decreases in both the
fidelity and stability of Bayesian LTs over the course of sleep (Fig. 4).
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Fig.4 |Spatial representations arerandomized over the course of sleep.
a,Heatmaps of ripple LTs for sample units in sliding 15-min windows throughout
asamplelong-durationsession show gradual decreases in LT stability over
time. Amatrix of correlation coefficients between LTs from different time
windows s provided on theright for each unit. b, PF fidelity (correlation
coefficientbetween LTs and PFs) shows agradual decrease over time in POST.
The colour traces show median values across unitsin each session. The black
traceand grey shade depict themedianandinterquartile range of the pooled
data. PREand MAZE epochs of differing durations were aligned to the onset

of MAZE, and POST epochs were aligned to the end of MAZE. ¢, Top panels:

LT stability correlation matrices averaged over all recorded units, shown
separately for each dataset. Here, the matrix for each unit was z-scored against
unit-identity shuffles before averaging. Bottom panels: the distribution of
z-scored LT stability in overlapping 2-h blocks during POST, separately for

each dataset. Comparisons across consecutive blocks were carried out using
two-sided Mann-Whitney U-tests with no correction for multiple comparisons
(Grosmark dataset: P<10™*, P=0.75,P<107*; Giridataset: P=0.81,P<107*,
P<10*,P<10*,P=0.04,P=0.08,P=0.77,P=0.005; Miyawaki dataset; P=0.47,
P=2x107*.NS, notsignificant; *P < 0.05; ***P< 0.001.

Thessimilarity of sleep representations to maze PFs decreased progres-
sively over POST, eventually reaching levels similar to those in PRE. The
stability of spatial tunings also decreased over this period, indicating
thatatthe ensemble level these representations becomeless coherent
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inlater periods of sleep. The dissolution of representational alignment
with the maze over the course of sleep may reflect an additionalimpor-
tant aspect of sleep, distinct from that of reactivation and replay*?.

Stability and retuning during sharp-wave ripples

Recent studies report that PFs drift and frequently remap with repeat
exposures to the same environment"'*%% althoughit is unclear when
and how these representational changes emerge. Given that the tun-
ings learned during POST ripples exhibit a diversity of PF fidelities,
some aligned but others misaligned with maze PFs, we investigated
whether these representationsrelate to the future spatial tunings of the
cells.Inthreerecording sessions fromtwo animals, we re-exposed rats
back to the maze environment after about 9 h of POST rest and sleep
(Fig. 5a). We labelled these epochs ‘reMAZE’ and compared the PFs
across maze exposures with the ripple LTs from the intervening POST
period (Fig.5b-d). POST ripple LTs showed significant correlations with
PFsfrom both maze exposures, indicating a continuity of representa-
tions across these periods. However, PFs were not identical between
MAZE and reMAZE (Fig.5b), illustrating that neuronal representations
driftand remap in the rat hippocampus’ (see also Extended Data Fig. 5).
Consistent with our hypothesis that representational remapping in
POST could account for PF deviations across repeated maze exposures,
ininstances in which we saw reMAZE PFs congruent with MAZE PFs
(Fig. Se, top), the POST LTs for those cells showed strong fidelity with
the maze period. Yet, ininstances in which reMAZE PFs deviated from
the MAZE PFs (Fig. 5e, bottom, and time-evolved examples in Fig. 5h
and Extended Data Fig. 6), the POST LTs for those units predicted the
PFs observed during maze re-exposure. Likewise, we observed a sig-
nificant correlation between PF fidelities in POST and the reMAZE-
MAZE similarity (Fig. 5f). These correlations were significant for cells
with both weak and strong PF stability on the MAZE (Extended Data
Fig. 5e,f) and were stronger for tunings learned from SWS than from
quiet wake (Extended DataFig. 5g,h). To better examine whether ripple
representations during POST can presage representational changes
across maze exposures, we carried out a multiple regression analysis
totest the extentto whichreMAZE PFs are explained by MAZE PFs and
LTs from PRE or POST (first4 h). We alsoincluded the average LTs (over
PRE and POST) to control for the general deviations of LTs that were not
specific to any unit, as well as ‘latePOST’ LTs constructed from the last
4 h of POST before reMAZE (Fig. 5g). This regression demonstrated a
significant contribution (8-coefficient) for MAZE PFs, as expected, indi-
cating that thereis significant continuity in PFs across maze exposures.
However, it also revealed that POST LTs, but not PRE LTs, affect the PF
locations in maze re-exposure. Remarkably, we found no significant
contribution fromthe latePOST LTs, indicating that our observations
donotsimply arise from temporal proximity between POST sleep and
the maze re-exposure, or from general dissolution and instability of
LTs in time (see also Extended Data Fig. 5i), but rather reflect rapid
changes in representations that are manifested in the initial hours
of sleep. Inspection of individual LTs (Fig. 5h; see also Extended Data
Fig. 6) showed multiple instances in which LTs from early POST peri-
ods showed spatial preferences that shifted away from MAZE PFs but
were better aligned with their future reMAZE tunings. Overall, these
results demonstrate the critical role of POST sleep in stabilizing and
reconfiguring the spatial representations of hippocampal neurons
across exposures to an environment.

Awake ripples and 0-oscillations direct post-maze
tunings

Our findings thus farindicate that the neuronal firing patterns during
POST ripples reflect both stable and retuned PF representations follow-
ingthe maze. We nextinvestigated the factors that conspire to establish
these patterns. Two recent studies?®? indicate that, more so than PF
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a, Timeline for sessions (n =3) in which the animal was re-exposed to the same
mazetrack (reMAZE) after >9 h frominitial exposure (MAZE). We used the
first4 hof POST to calculateLTs. ZT, zeitgeber time. b, Cumulative distribution
of PF similarity between MAZE and reMAZE, compared (one-sided) to null
distributions obtained from unit-identity shuffles (grey; P<107*). ¢, Cumulative
distribution of POST PF fidelity (correlation coefficient between POST LTs

and MAZE PFs; P<107*).d, Cumulative distribution of correlation coefficient
between POST LTs and reMAZE PFs (P<107*).Inb-d, Pvalues were obtained by
comparing the median (one-sided) against those from surrogate distributions
from10* unit-identity shuffles. e, Example units with high MAZE-reMAZE
similarity and high POST PF fidelity (top row), or low MAZE-reMAZE similarity
and low POST PF fidelity (bottom row). The rightmost column shows the
degree of similarity between the reMAZE PFs and POST LTs for each unit.

f, MAZE-reMAZE similarity correlated with POST PF fidelity. The best linear

activity, the spike patterns of neurons during waking 6-oscillations
provide the necessary conditions for establishing the firing patterns
observed during POST sleep. Other studies, however, suggest that
awake ripples are a primary mechanistic candidate for generating stable
representations®®*, Adding further complication, several studies have
indicated that PRE and POST ripples share overlapping activity struc-
ture!**2* suggesting limits on the flexibility of sleep representations.
To better understand the respective contributions of these different
factorsontherepresentationsin POST sleep, we carried out amultiple
regression to test the extent towhich POST LTs are explained by PRE LTs,
MAZE PFs, LTs of MAZE 6-oscillation periods and LTs of MAZE ripples
(Fig. 6a). Remarkably, we found that the -coefficients for all of these
regressors were significant. The S-coefficient for MAZE 0-oscillation
LTs was significant, indicating that waking 0-oscillations, particularly
atthetrough of 8-waves (Extended DataFig. 7e,f), areimportant for the
formation of ensemble representations?%, Consistent with this, the
stability of PFs on the MAZE was significantly predictive of the stability
and fidelity of LTs during POST (Extended Data Figs. 7 and 8). However,
overall, MAZE ripple LTs had the largest S-coefficient, indicating that
firing patterns during wake ripples on the maze have the most lasting
impact on POST ripple activity®***., Remarkably, the second largest
[S-coefficients were observed for PRE ripple LTs, indicating that next

fitand 95% confidence intervals are overlaid withablack line and shaded grey,
respectively. g, Multiple regression analysis for modelling reMAZE PFs using
PRELTs, MAZE PFs, POST LTs and latePOST LTs (beyond first4 h) asregressors
(R?=0.19,P<107*,¢,=0,¢,=0.13,8,=-0.02,P=0.77,3,= 0.31, P<10™*, B, = 0.14,
P<107%,B8,=-0.01,P=0.58; Pvalues were obtained by comparing the R*and
each coefficient against surrogate distributions from 10* unit-identity shuffles
of reMAZE PFs). The overlaid circular markers depict regression coefficients
obtained by leaving out one sessionatatime. h, Heat maps of ripple LTs

for sample unitsinsliding 15-min windows from different sessions (session
hypnogramsontop, asinFig.3; MAZE and reMAZE PFsand LTs during PRE,
POST and latePOST on the right). Note the rapid emergence of LTs during

POST that showed alignment with their future PFsduring reMAZE. ***P<0.001.
Drawings of ratsinaby E. Ackermann, reproduced from https://github.com/
kemerelab/ratpack/under a Creative Commons licence CC BY-SA 4.0.

to MAZE patterns, patterns configured in PRE also provide an impor-
tant determinant of POST sleep activity®>>*. Consistent with this, we
observed a significant correlation between the PF fidelity in PRE and
the PF fidelity in POST (Fig. 6b).

These observations suggest that despite the absence of maze tun-
ingin PRE sleep, some cells maintain similar representations between
PRE and POST. Sleep similarity, which measures the consistency of
LTs across PRE and POST by assessing the correlation between PRE
LTs and POST LTs, was significantly correlated with PF fidelity in PRE
(Fig. 6¢); thus, PRE LTs that aligned with maze PFs, presumably by
chance, maintained those LTs in POST (see also individual examples
in Extended Data Fig. 3, such as in rat N). By contrast, sleep similar-
ity showed a weak negative correlation with the PF fidelity in POST
(Fig. 6d), consistent with the notion that these measures respectively
reflect neuronal rigidity and flexibility. To better understand the dif-
ference between PRE and POST LTs, we separated units into relatively
‘PRE-tuned’ (PRE PF fidelity > median of shuffles) and ‘PRE-untuned’
(PRE PF fidelity < median of shuffles) cells. PRE-tuned cells showed
generally high POST PF fidelity along with high sleep similarity (Fig. 6e),
with a positive correlation in these variables in the further subset of
cells that were significantly PRE-tuned cells relative to unit-identity
shuffles. By contrast, PRE-untuned cells showed a significant negative
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Fig. 6 | Ensemble patterns during awake 0-oscillationsand ripplesanda
diversity of pre-existing representations affect the tuningsin POST sleep.
a, Multiple regression analysis for estimating the dependence of POST LTs on
PRELTs, MAZE PFs, MAZE 6-oscillation LTsand MAZE ripple LTs shows that
POST LTs were most significantly affected by PRE LTsand MAZE ripple LTs
(R*=0.51,P<107%,¢,=0,¢,=0.18,4,=0.29,P<107*,B8,=0.06,P<10™*, 8,=0.13,
P<107*,B,=0.32,P<107% Pvalues were obtained by comparing (one-sided) the
R*and each coefficient against surrogate distributions from 10* unit-identity
shuffles of POST LTs). The overlaid circles mark regression coefficients obtained
by leaving outone sessionatatime.b, PF fidelity (correlation with MAZE PF)
was significantly correlated between PREand POST LTs. Inb-f, the best linear
fitsand 95% confidence intervals are overlaid with ablack line and shaded grey,
respectively. c,Sleep similarity (correlation coefficientbetween PREand POST
LTs) was correlated with PRE PF fidelity, indicating that high-fidelity PRE LTs are
preservedin POST. d, An overall negative correlation between sleep similarity
and POST PF fidelity. e, When we splitunitsinto relatively PRE-tuned (PRE PF
fidelity > median of shuffle distribution) and PRE-untuned units (PRE PF
fidelity < median of shuffle distribution), sleep similarity (top histogram)
and POST fidelity (right histogram) were both high for PRE-tuned cells, with a
positive correlation (R*=0.50, P=0.0004) for the subset of cells that were
significantly PRE-tuned (white circles, 46 out of all 660 units). f, For PRE-untuned
cells,anegative correlation between POST PF fidelity and sleep similarity
indicates a continuum of flexible retuning to maze PF. ***P < 0.001.

correlation between sleep similarity and POST fidelity (Fig. 6f); those
with high sleep similarity were poorly tuned in POST, whereas those
that reconfigured from PRE to POST showed better fidelity to maze
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PFs. These analyses therefore reveal the contribution of PRE sleep to
maze representations and POST activities; cells whose representa-
tions are already aligned with maze PFs in PRE maintain those same
representations in POST, but other neurons exhibit a broad range of
flexible reconfiguration that is inversely proportional to their rigidity**
across PRE and POST.

Discussion

The observations of dynamic representations in offline states made
possible by Bayesian learning have important implications for our
understanding of how learning and sleep affect the PF representa-
tions of hippocampal neurons. First, we found that neural patterns
occurring in PRE reconfigure during exposure to anew environment.
Although ripple events during pre-exposure occasionally scored highly
for replays, spatial representations were not coherent among active
neurons during these periods, as cells with very divergent PFs often
fire within the same time bins (for example, Extended Data Fig. 4d,e).
These observations suggest that continuous patterns in the decoded
posteriors of spike trains could emerge spuriously. Consistent with
this notion, it has been noted that the measures and shuffles used to
quantify replaysinevitably introduce unsupported assumptions about
the nature of spontaneous activity***5*¢, We propose that only for
those periods and events in which there is strong correspondence
between Bayesian LTs and neurons’ PFs, can it be considered valid to
apply Bayesian decoding to offline spike trains™.

Among the brain states we examined, sharp-wave ripples in early
sleep offered the representations that best aligned with the PFs on the
maze. These early-sleep representations emerged from a confluence
offactors, including carryover of firing patterns from pre-maze sleep
(inbothrelatively PRE-tuned and PRE-untuned units)**. Most notably,
however, our analysis revealed a key role in awake activity patterns
during 0-oscillations, particularly at the trough of 8-waves, which
corresponds to the encoding phase®?® (whereas the peak of 8-waves
corresponds to greater dispersion and prospective exploration®#),
and more prominently, those during sharp-wave ripples, in generat-
ing the ensemble coordination that underlies spatial representations
during sleep. This may indicate a greater similarity in co-firing across
awake and sleep ripples, compared to that for awake 8-oscillations'
and sleep ripples, although we note that 8-oscillation and ripple LTs
both provide strong PF fidelity (Fig. 2). These observations are con-
sistent with the hypothesis that an initial cognitive map of space is
first laid down during 6-oscillations'***?**, and then stabilized and
continuously updated by replays during awake ripples based on the
animal’s (rewarded and/or aversive) experiences on the maze3°342-4,
Once ensembles are established, they reactivate during the early part
of sleep™*. However, sleep representations were not always mirror
images of the maze PFs, and our Bayesian learning approach allowed
us tomeasure those deviations for individual neurons. Remarkably, we
found that these early-sleep ripple representations proved predictive
of PFsonre-exposure to the maze. Onthe basis of these observations,
we propose that representational driftin fact arises rapidly from retun-
ing that takes place during early-sleep sharp-wave ripples rather than
noisy deviations that develop spontaneously over time. This could
reflect the possibility that single-trial plasticity rules that give rise to
new PFs*¢*8 are also at work when animals go to sleep. Furthermore,
we conjecture that hippocampal reactivation during sleep does not
have a passive role in simply recapitulating the patterns already seen
duringlearning, but represents akey optimization process generating
and integrating new spatial tunings with recently formed spatial maps.

Overall, representations remained stable and consistent with the
maze for hours of sleep in POST, despite the absence of strong sequen-
tial replay trajectories during ripplesin POST sleep. Reconciling obser-
vations based on studies that measure neuronal reactivation using
pairwise or ensemble measures with those that focus on trajectory



replays has until now represented a challenge to the field*. Our study
consolidates these views by demonstrating that faithful representa-
tions, which are consistent with pairwise and ensemble measures of
reactivation, persist for hour-long durations. However, the trajectories
produced by these cell ensembles do not necessarily provide continu-
ous high-momentum sweeps through the maze environment®**', as we
found high-fidelity spatial tunings even among low-replay-score ripple
events in post-maze sleep. Instead, trajectories simulated by the hip-
pocampus during sleep ripples may explore pathways that were not
directly experienced during waking but can serve to better consolidate
acognitive map of space**2. Additionally, we found increasing instabil-
ity and drift in the spatial representations of neurons over the course
of sleep, indicating that late sleep, like PRE, features more randomized
activity patterns®*2, It is also worth noting that we found weak align-
mentbetween maze PFs and learned spatial tunings during REM sleep,
but that this alignment was best at the trough of 6-waves>**. It may be
that under a different behavioural paradigm such as with frequently
repeated maze exposures®® or salient fear memories”, we might have
uncovered tunings more generally consistent with dream-like replays
of maze PFs*. Nevertheless, itis also worth noting that most dreams do
notsimply reprise awake experiences?. The randomization of represen-
tations, as we see during the bulk of REM and late stages of SWS, may
reflect an important function of sleep, driving activity patterns from
highly correlated ensembles to those with greater independence®**,
which may be important for resetting the brainin preparation for new
experiences®.

In sum, the Bayesian learning approach provides a powerful means
oftrackingthe stability and plasticity of representational tuning curves
of neurons over time, which provides insights into how ensemble
patterns form and reconfigure during offline states. Provided a suf-
ficient number of units are sampled (Extended Data Fig. 1), a similar
approach canbereadily extended toinvestigate the dynamics of inter-
nally generated representations in other neural systems during both
sleep and awake states, including in rehearsal, rumination or episodic
simulation®°,
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Methods

Behavioural task and data acquisition

We trained four water-deprived rats to alternate between two water
wells in a home box to which they had previously been habituated.
Owing to the large number of recorded units obtained from each
animal, such sample sizes were chosen as typical for demonstrating
consistency among subjects. The selections of animals and recorded
hippocampal units were essentially random, and analyses and data col-
lection were performed by different personnel. The custom analyses
and sequential design prevented investigators from remaining blind
to the group allocations. Water rewards during the alternation were
delivered through water pumps interfaced with custom-built Arduino
hardware. After the animals learned the alternation task, they were sur-
gicallyimplanted under deep isoflurane anaesthesia with 128-channel
silicon probes (eight shanks, Diagnostic Biochips) either unilaterally
(onerat) or bilaterally (three rats) over the dorsal hippocampal CA1
subregions (anterior-posterior: -3.36 mm, medial-lateral: 2.2 mm).
Following recovery of therats from surgery, the probes were gradually
lowered over a week to the CAl pyramidal layer, which was identified
by sharp-wave-ripple polarity reversals and frequent neuronal firing.
After recording stability was ensured, the animals were exposed to
new linear tracks during one (three rats) or two (one rat) behavioural
sessions (intotal five sessions from the four rats). During each session,
the implanted animal was first placed in the home box (PRE, about
3 h)withadlibitumsleep (during the dark cycle). Then the animal was
transferred toanew linear track with two water wells that were mounted
onplatformsateitherend of the track (MAZE, about 1 h). After running
onthelinear track for multiple laps for water rewards, the animal was
returned to the home box (aligned with the start of the light cycle) for
another =10 h of ad libitum sleep (POST). In four of these sessions,
following POST the rats were re-exposed to the same linear track for
another =1 h of running for reward (reMAZE).

Wideband extracellular signals were recorded at 30 kHz using an
Open Ephysboard® or an Intan RHD recording controller during each
session. The wideband activity was high-pass-filtered with a cutoff
frequency of 500 Hz and thresholded at five standard deviations above
the mean to extract putative spikes. The extracted spikes were first
sorted automatically using SpykingCircus®, followed by a manual
pass-through using Phy® (https://github.com/cortex-lab/phy/). Only
units with less than 1% of the total number of spikes in their refractory
period (on the basis of the units’ autocorrelograms) were included in
further analysis. Putative neurons were classified into pyramidal and
interneurons on the basis of peak waveform shape, firing rate and
interspike intervals®*%, For analysis of local field potentials (LFPs,
0.5-600 Hz), signals were filtered and downsampled to 1,250 Hz.

The animal’s position was tracked using an Optitrack infrared cam-
era system (NaturalPoint) with infrared-reflective markers mounted
on a plastic rigid body that was secured to the recording headstage.
Three-dimensional position data were extracted online using the
Motive software (version 2.1.1), sampled at either 60 Hz or 120 Hz,
and later interpolated for aligning with the Ephys data. Although we
attempted to track the animal’s position during each entire session,
includingin the home cage, the cage limited visual access from our fixed
cameras. Additionally, in one session the position data for reMAZE was
lost during the recording. All animal procedures followed protocols
approved by the Institutional Animal Care and Use Committees at the
University of Michigan and conformed to guidelines established by
the United States National Institutes of Health.

These dataconstituted the Giri dataset used in our study. We also took
advantage of previously published data described in detail in a previ-
ous report*. These data consisted of recordings of unit activity and
LFPs from the rathippocampus CAlregion carried out using Cheetah
software (version 5.6.0) onaNeuralynx DigitalLynx SX data-acquisition
system, with PRErest and sleep, exposure toanew MAZE, and POST rest

and sleep: the Miyawaki dataset (three rats, five sessions; PRE, MAZE,
POST, each about 3 h)*** and the Grosmark dataset (four rats, five
sessions; PRE, and POST, each about 4 h and MAZE, about 45 min)3*¢°,
Vectorized ratimages used in the manuscript were provided by E. Ack-
ermann (https://github.com/kemerelab/ratpack/).

Units

In all of these data, we quantified the stability of units across sleep
epochs; PRE and POST in Miyawaki and Grosmark sessions, and PRE,
POST and latePOST in the Giri dataset (Extended Data Fig. 8). Consist-
ency inisolation distance and firing rate over the sleep epochs were
used as stability measures®. Units with isolation distance >15 and fir-
ing rate that remained above 33% of the overall session mean during
allepochs were considered stable. For all of the analyses in the paper,
werequired stability during PRE and POST, but for reMAZE prediction
analyses (Fig. 5and Extended Data Fig. 5), we required stability across
PRE, POST and latePOST. See Supplementary Tables 1-3 for further
details of each session. These data are available upon request from
the corresponding author.

PF calculations

To calculate PFs, we first linearized the position by projecting each
two-dimensional track position onto aline that best fitted the average
trajectories taken by the animal over all traversals within each session.
The entire span of the linearized position was divided into 2-cm posi-
tion bins and the spatial tuning curve of each unit was calculated as
occupancy-normalized spike counts across the linearized position
bins. We considered only pyramidal units with MAZE PF peak firing
rate >1Hzfor further analyses, except for those in Fig. 5Sh and Extended
Data Fig. 3, in which all stable pyramidal units were included.

PF stability. Ineach session, the MAZE epoch was divided into six blocks
with matching number of laps and then the PFs were separately calcu-
lated for each block. Each unit’s PF stability was defined as the median
correlation coefficient of PFs across every pair of blocks.

Spatial information. The spatial information® was calculated as the
information content (inbits) thateach unit’s firing provides regarding
the animal’s location:

information content = Z P.(R/R)log,(R:/R)

inwhich R;isthe unit’s firing rate in position bini, Ris the unit’s overall
mean firing rate, and P;is the probability of occupancy of bin i.

LFP analysis and brain state detection

We estimated a broadband slow-wave metric using the irregular-
resampling auto-spectral analysis approach®, following code shared
byD. Levensteinand the Buzsaki Lab (https://github.com/buzsakilab/
buzcode). This procedure allows calculation of the slope of the power
spectrum that was used to detect slow-wave activity. The slow-wave
metric for each session followed a bimodal distribution with a dip
that provided a threshold to distinguish SWS from other periods.
Atime-frequency map of the LFP was also calculated insliding 1-s win-
dows, step size of 0.25 s, using the Chronux toolbox (version 2.12)%°. To
identify high 6-oscillation periods, such as during active wake or REM
sleep?”°, the 8-oscillation/non-6-oscillation ratio was estimated at each
time pointasthe ratio of power in 8-oscillations (4-9 Hzinhome cage
and 6-11 Hzon the linear track, as we typically observe a small shift in
0-oscillations between these periods’) to asummation of power in the
6-oscillation frequency band (1-4 Hz) and the frequency gap between
the first and second harmonics of 6-oscillations (10-12 Hzduringhome
cage awake and REM epochs and 11-15 Hz during MAZE). To calculate
the ripple power, multichannel LFP signals were filtered in the range
0f150-250 Hz. The envelope of the ripple LFP was calculated using the
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Hilbert transform, z-scored and averaged across the channels. Only
channels with the highest ripple power from each electrode shank
were used in the averaging.

Detection of ripple events

For each recording session, multi-unit firing rates (MUA) were cal-
culated by binning the spikes across all recorded single units and
multi-unitsin1-ms time bins. Smoothed MUA was obtained by convolv-
ing the MUA with a Gaussian kernel with =10 ms and z-scoring against
the distribution of firing rates over the entire session. Ripple events
were first marked by increased MUA that crossed 2z and the bounda-
ries were then extended to the nearest zero-crossing time points on
each side. Theripple events that satisfied the following criteria were
considered for further analysis: duration between 40 and 600 ms;
occurrence during SWS with a 8-oscillation/6-oscillation ratio <1and
ripple power > 1.s.d. or during quiet wake with ripple power > 3s.d. of
the mean; and concurrent speed of the animal below 10 cm s™ (when
available). All ripple events were subsequently divided into 20-ms time
bins. The onsets and offsets of the events were adjusted to the first
time bins with atleast two pyramidal units firing. We split ripples with
silent periods >40 ms into two or more events. Histograms of ripple
durations are reported in Extended Data Fig. 2d.

BayesianLTs

Consider the following. We recorded fromaset of nindependent neu-
rons during a maze session and parametrized their spatial tuning
curves f (x)...f, (x) for positionsxonthe maze. However, subsequent
tothesession, we lose the tuning curve for one of the neurons, neuron
i. Alternatively, maybe this neuron was inaccessible during the maze
session, because of faulty electronics, but we regain access to it in
sleep after the maze. We consider whether there is any way that we can
learn the tuning curve p(spikes,|x) of neuron i, using information
gleaned from firing activity of the other neurons over some period
oftime T.

Although this may initially seem impossible, if the neurons are all
indeed conditionally dependent on position x, and if some internal
estimate, thought or imagination of x continues to drive the spiking
activity of these neurons, then with enough observation it should
be possible to extract the tuning curve through Bayesian learning.
Intuitively, if neuron i, has a preference for some position x, then
whenever the animalis thinking of x, evenifitisnolonger on the maze,
the neuronishould fire alongside all of the other neurons that have
asimilar preference for x. However, if neuron i fires randomly with
different neurons, thenit cannot be said to have any particular spatial
tuning forx.

Inthis paper, we are concerned with estimating tuning curves on the
basis of internal representations of position, rather than an external
marker. Our motivating hypothesisis that during the periods of estima-
tion, even though some neurons may change their tuning functions,
if the ensemble largely maintains its internal consistency then it is
informative to measure the tuning curves of individual neurons during
these periods. Bayesian decoding has been often used to analyse the
positioninformation encoded by the ensemble during offline periods.
However, it relies on the assumption that the position preference of
neurons does not change over time and experience, which is known
to be false for hippocampal neurons.

We model hippocampal neurons as conditionally independent Pois-
sonrandom variables with firing rates that vary over discretized spatial
bins. When an animal explores the maze the firing rate parameters
(that s, tuning curves) of observed neurons, j;j#i (x), are typically
calculated using the occupancy-normalized spike-triggered average
position:

Y, S5 10ce=xp)

VAl S ey
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in which the indicator function 1(x=x;) =1 during periods in which
theanimalisin position bin x, and 1(x # x;) = O otherwise. In this work,
we also account for directional tuning curves, as discussed below.
We define the LT curve for neuronias g (x=x;), whichis therate para-
meter of the distribution p (s;|x = x; ), for which we may have some prior
beliefs Py

The likelihood of the observed data during the LT period can be
described as

P(D,8()) =P, [1P (51, v 1g00)) )
t

inwhich we have taken the tuning curves of the other neurons as known
parameters. Using the Bayes rule, we can directly formulate the like-
lihood of g(x) from this equation, and then calculate a maximum-
likelihood estimate. Note that because the positionis considered unob-
served during our period of interest, it does not enter into this equation.
However, we canintroduceit:

p(g(X)ID) =Py, l:l %P(Szt’ Syjei 1 X" =Xplg(x)) (3)
By o [1 2 P(S{IX =X, OOID (S X =Xm)D (X =X)  (4)

inwhich, inthelastline, we have taken advantage of the independence
ofthe positionand the activity of the other neurons onthe parameters.
In Bayesian estimation, the prior, p w0’ allows for the integration of
other information into the estimate. For example, we could assume a
bias towards a previous measurement that is refined over time or
choose a prior such that the shape of g(x) reflects general previous
observations of the tuning curves of neurons during behaviour, or
more generally one that enforces smoothness over position”. In this
work, we assume a general uninformative prior. In such a case, it can
be shown (see the section entitled Bayesian LT with uninformative
prior) that the maximizing values for the tuning curve are:

Zt Sfp(x[ =Xk|S,-,SVj¢,-[,g(X))
th(xt =Xk|Si, Svj;git;g(x))

)

Elx=x,)=

Examining this equation, we see that it is quite similar to the normal
occupancy-normalized tuning curve estimate, except that we now have
the posterior distribution of x rather than binarized counts of occupancy.
Moreover, note that this is not actually a closed-form solution, as the
parameters appear on both sides of the equality. To avoid an iterative
solution, we approximate p (x‘ =X|s;, Sy ', () = p (X" = xyIsy ),
which is sensible in the case of large numbers of neurons, as the posi-
tion dependency on any single neuron is small. Thus, we arrive at our
estimator for the LT of neuron i.

t t 5

2 SipX" = XISy i)
t t

2 P =Xy Sy i)

(6)

Ex=x) =

Finally, note that the denominator here represents the estimated
average occupancy during the period in which we are calculating LTs.
For the illustrations and analyses in which LTs are evolved over very
short time windows (for example, for 15-min sliding windows in Fig. 4
and elsewhere, defined ast € T), we used the estimated average occu-
pancy over the entirety of such periodsin the recording (for example,
ripples over all of POST in Fig. 4) in the denominator. Thus, for these
short windows:

t t_ t

o 27 Si PX =X Sy i)
- t_ t
2ve PO = XSy i)

)



For the tuning curves of the observed neurons, as most of the ses-
sions (16 out of 17) consisted of two running directions on the track,
we first calculated the posterior joint probability of position and travel
direction and then marginalized the joint probability distribution over
travel direction™:

PGSy ) <P (S, S oes Sio1y Siaty o0 SylX, d) (8)

inwhich d signifies the travel direction. With the assumption of inde-
pendent Poisson-distributed firings of individual units conditioned
on maze position and direction®”?, we have:

ple disy;.) =[] (f; &, d)1)¥ elixadr )

J#i

Inequation (9), fj (x, d) characterizes the mean firing rate of unit j
atposition bin x and directiond and 7 is the bin duration used for decod-
ing, which was chosen to be 20 ms in our analyses. By marginalizing
the left-hand side of equation (9) over direction d, we obtain

PXISy ) = Y. (X, dlsy;.,)

(10)
d

which we have used above to calculate p(x‘ =x;|sy,.;") in each time
bin.

We note that though this approachrelies on the PFs of neurons meas-
ured on the maze to calculate the posterior probability of x, a given
neuron’s LT does not depend on its own PF but is learned on the basis
ofthe coherence of its firing with the other neuronsin the ensemble. A
neuron that fires mostly randomly with other neuronsinasample epoch
will produce a spatial LT that will be diffuse across locations, whereas
aneuron that fires only with neurons that encode a specific segment
of the maze will produce an LT that represents that same segment.
Critically, if the LT curve of a neuron learned from activity during an
epoch does not match its maze place preference, then it cannot rea-
sonably be said to ‘encode’ that same location during this epoch. The
LT therefore allows us to examine for which time periods and which
neurons we can use Bayesian decoding following more standard
methods™ "2

Thisapproach canbe readily generalized to other neural systems for
whichtuning curves have beenrecorded, provided asufficiently large
number of units are recorded to sample the stimulus space. In the case
of one-dimensional MAZE locations and PFs, we find that >40 simulta-
neously recorded units are needed to reliably obtain high-fidelity PFs
(Extended Data Fig.1). For larger or multiple environments, a greater
number of units may be needed, as insufficient neuronal sampling
or inherent preferences in the dataset (for example, for reward loca-
tions) may result in some biases across the stimulus space. Signifi-
cance testing should therefore be carried out against unit-identity
shuffles across available units. Before evaluating offline LTs, vali-
dation can be carried out against online data to confirm adequate
sampling resolution.

Additional restrictions to avoid potential confounds from unit wave-
form clustering. To avoid potential confounds from spike misclassi-
fication of units detected on the same shank”, we applied additional
inclusion requirements for LT calculations. We determined the L ratios™
between unitiand each other unit recorded on the same shank, yield-
ing the cumulative probability of the other units’ spikes belonging to
uniti. Astherange of L ratio depends on the number of included chan-
nels, to provide a consistent threshold for all datasets, the L ratio for
each pair was calculated using the four channels that featured the high-
est spike amplitude difference between each pair of units. Only units
withL ratio > 107 (Extended Data Fig. 3) were used to calculate LTs for
each cell.

Fidelity of the LTs across epochs

To quantify the degree to which tuning curvesin LTs or PFs relate across
epochs, we used a simple Pearson correlation coefficient across posi-
tion bins. We obtained consistent results with the Kullback-Leibler
divergence (not shown). The median for each epoch was compared
against a surrogate distribution of such median values obtained by
shuffling (10* times) the unit identities of the PFs within each session.
Thus, we tested against the null hypothesis that LTs in each session may
have trivial non-zero correlations with PFs. For each epoch we obtained
Pvalues based onthe number of suchsurrogate median values that were
greater than or equalto those inthe original data. With the exception of
theanalysisin Fig. 2, only units that participatedin >100ripple events
in PRE or POST were included in the analysis.

LT stability and dynamics

We further evaluated the dynamics of LTs acrosstimeinnon-overlapping
15-minwindows (except forillustration purposes alone, in time-evolved
LTsin Figs. 3a, 4a and 5h and Extended Data Fig. 3, in which we used
overlapping15-min windows with a 5-min step size). A unit’s LT stability
was defined as the median Pearson correlation coefficient between that
unit’s LTs in all different pairs of time windows within a given epoch.
Thus, units that had stable and consistent LTs across an epoch yield
higher correlations in these comparisons than those with unstable
LTs. These unit LT stability values were z-scored against a null distri-
bution of median correlation coefficients based on randomizing the
LTs unit identities within each 15-min time window (1,000 shuffles).
Normalized stability correlation matrices in Fig. 4c were calculated by
z-scoring each correlation coefficient against asurrogate distribution
based onshuffling the LTs  unitidentities. Toinvestigate the changesin
POST LT stability over time in Fig. 4c, we calculated LT stability within
overlapping 2-h blocks with a step size of 1 h.

Ripple eventreplay scores

The posterior probability matrix (P) for eachripple event was calculated
on the basis of previously published methods. Replays were scored
using the absolute weighted correlation between decoded position
(x) and time bin (£)*:

. cov(t,x; P)
corr(t,x; P) Jeov(t, t; P)cov(x,x; P) (H)
Y P — ; P)(&—m(¢t; P
cov(t,x;P):Z,Z/ 0 ~ mx; PG~ m(E; P) (12)

22 F
inwhichiand jaretimebinand positionbinindices, respectively,and

m(x; P) = 722,25;,:9 m(t; p) = 722' Zz’ F;’jt'
i Zj1ij i 2j1ij

Eachreplay score was further quantified as a percentile relative to

surrogate distributions obtained by shuffling the data according to

the commonly used within-event time swap, in which time bins are

randomized within eachripple event’. We preferred this method over

the circular spatial bin shuffle (or column-cycle shuffle’) as it preserves

the distribution of peak locations across time bins within each event

(seealsorelated discussioninref. 33). Each ripple event was assigned

to one of four quartiles on the basis of the percentile score of the
corresponding replay relative to shuffles.

13)

PF overlap with decoded posterior

For the analysis displayed in Extended DataFig. 4, a Pearson correlation
coefficient was calculated between the PF of each unit firing (partici-
pating) inatimebin and the posterior probability distribution for that
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bin based onthe firings of all units. The mean posterior correlation of
PFs was calculated over all participating units. As this mean posterior
correlation might be inflated whenthereisalow number of active units,
for each time bin with n participating units we generated a surrogate
distribution of mean posterior correlation by randomly selecting n
units from the population recorded in that session. Then, the mean
posterior correlationin the original data was z-scored against the cor-
responding surrogate distribution for n.

0-oscillation LT variations with oscillation characteristics

We investigated how LTs during periods dominated by 8-oscillations,
such as MAZE active running periods and REM periods, were influ-
enced by oscillation characteristics, such as power, phase and fre-
quency. 6-oscillation power was determined by computing the power
spectrum of the LFP recorded from the channel exhibiting maximum
ripple power (typically in the pyramidal layer) in 2-s windows with
1-s overlap, using the Chronux toolbox (version 2.12) and averag-
ing the power within the 6-oscillation frequency range (5-10 Hz).
0-oscillation frequency within each window was identified as the
frequency exhibiting peak power within the 8-oscillation frequency
range. 6-oscillation phase was obtained by band-pass filtering the LFP
within 6-oscillation frequency range and computing the phase of the
analytic signal derived from the Hilbert transform of the O-filtered
LPF. 8-oscillation periods were divided into 20-ms time bins, and
0-oscillation power, frequency and phase were calculated within
eachbinusinglinearinterpolation. Time bins were then categorized
into low versus high 08-oscillation power or frequency according to
the medians of the corresponding distributions across all time bins
within each session. To compensate for potential misalignment
between unit and LFP signals, we first aligned the instantaneous
phase signal such that the 8-oscillation trough corresponded with
maximum population firing across all units. Subsequently, time bins
were divided into trough (-1t/4-1/4), ascending (1t/4-31/4), peak
(3t/4-51/4) and descending (51/4-71/4) B-phases. The LTs were
calculated separately for each subset of phases, as depicted in
Extended Data Figs. 2f and 7e. REM periods were restricted to inter-
vals lasting at least 6 s to minimize false positives. For analyses of
MAZE active running periods, 8-oscillation periods were restricted
to intervals in which the animal’s velocity exceeded 10 cm s and we
matched the number of firing bins for each unit across all data splits
to control for possible differences. LT variations with respect to ani-
mal’s velocity during MAZE periods were determined by calculating
LTs for distinct subsets of time bins, divided according to the median
of the velocity distribution across all MAZE 8-oscillation time bins
within each session.

Multiple regression analyses

To examine the extent to which a spatial tuning curve (LT or PF) within
agiven epoch was affected by the tuning curves in other epochs, we
carried out multiple regression analyses. For example, we modelled
POST LTs using:

POSTLTs=cy+c;xaverageLT+ B x PRELTs + B, x MAZE PFs

+B,xMAZE 6-oscillation LTs + 8, x MAZEripple LTs (14)
and reMAZE PFs using
reMAZE PFs =c(+c,x average LT + B, xPRELTs 1s)

+B, x MAZE PFs + 8, x POST LTs

The dependent variables and regressors were calculated over all posi-
tion bins from all units. The average LT in the analyses was calculated
by averaging all unit LTs over PRE and POST. The c-terms and S-terms
are the regression coefficients.

To test the statistical significance of the regression R? values and
each regression -coefficient, we compared these against distri-
butions of surrogates (10* shuffles) calculated by randomizing the
unit identities of the dependent variable’s tuning curves. For
each coefficient and R?value, we obtained a Pvalue based on the num-
ber of surrogates that were greater than or equal to those in the
original data.

Bayesian LT with uninformative prior

We will define s, ., as the vector of spike observations for all neurons
excepttheith,and sy, is the observation at time . p(x|sy..,) is the
posterior probability distribution of positions as already defined
(calculated using the firing rate estimates from PFs using a uniform
prior over position).

Define our observations attime ¢, D' = [svj,é,-t; sf]1. Assume that the
neuron of interest exhibits Poisson spiking over the spatial bins x,,,
with parameter g ; in other words, p(sjx=x,,) ~ Poisson(g,, ), where
~indicates ‘distributed as’. Thus, our estimation problem s specifically
to find the best estimates of the m parameters, g= {g,}-

In general, the Bayesian data likelihood is found using the Bayes
rule:

)= p(g) p(Dig)

(D) < p(g) p(DIg)

p(glD

Thus, for all of our observations, we can write:

p(gD) <p(g) [1p(D'g)
t
=p(g) np(Sf, 5v1¢it|g)
t
=p(g) 12 p(st, sy, x = x,l2)
t m
=p(g) [1 Y p(sf, sy jui' X" =X, ©)P(X" = X,,18)
t m
=p) [1X P(SiISy jui's X* = Xin, ©IP(Sy il X" = X0, ©)P(X" = Xl 8)
t m

=p(@) [T 2 PSix" =X @P(51jui X" =X, (X" = X,)

t m

inwhich, in the last line, we have taken advantage of the conditional
independence of the spiking s;, ..., s,, of the neuronsin each time bin
conditioned on the position x’in that bin, and the activity of the other
neurons, on the parameters.

p(gID) =< p(g) [1 Y. p(siIx" =X, 8) P(Syjui X" = X)) P (X" = X,)

t m

To find the best parameters, we will maximize the logarithm of this
quantity by taking the derivative with respect to each g= {g, }and set-
ting it equal to zero.

o

maxg, > 2%
K

log(p(g) [1 2. p(siIx" =X, 8) P(Sy i IXF = X)) P(X = X,,)) = 0

We will assume that our neurons are Poisson distributed; that is:

p(stlxt =x,,g) = Poisson(s; g,)

Note that the derivative with respect to the parameter g, can be
expressed as

%Poisson(s{; g,) = (si/g, —1)Poisson(s; g,)
X



Thus, we have:
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Tobias theresults aslittle as possible, we will use aflat prior p(g,) =1
for g, > 0 (note that this is an ‘improper’ prior as it does not integrate
to1, butthe posterior isstill proper”™). Another alternative might be to
shape the parameter distribution using a conjugate prior with param-
eters determined using information from the behavioural period or
from the statistics of the other neurons. With an uninformative prior,

maxg, > Z (Sit/gk -1 px‘=xls;, SVj#itlg) =0
t
Rearranging this, we write:
max g, > 1/g, ¥ Sip(" =xyls;, Sy’ 8) = X PX = xls;, Sy i, &)
t t

t t_ t
o 2 Si PO =S, Sy 8)
- t_ t
KXt =X, Sy 8)

This can be interpreted as a normalized spike-triggered average
posterior probability distribution over space, triggered on the spikes
of the neuron whose LT we are calculating.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The Grosmark dataset is publicly available at https://doi.org/10.6080/
K0862DC5. The Miyawaki and Giri datasets are available uponrequest
from the corresponding author.

Code availability

Custom-written MATLAB and python code supporting this study is
available at https://github.com/diba-lab/Maboudi_et_al_2022.
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Extended DataFig.1|Thefactors thatimpactlearned tunings. Inthree
sample maze sessions we calculated LTs by (a) randomly varying the number
andsubset of awakeripple events, or (b), varying the number of unitsincluded,
and tested the effects on the quality of LTs, as reflected by PF fidelity. Samples
thatyielded with significant median LT fidelities (r(LT, PF), p< 0.01relative to
unitID shuffle) arerepresentedin gray dots, whereas non-significant samples
areindicated by empty circular markers. The median LT fidelity increases as
moreripplesand unitsareincorporated. Based on these results, we estimate
thatapproximately 40 simultaneously recorded units are needed to obtain
quality LTs, whereas the minimum number of ripples could vary across
sessions, with as few as five ripples needed to generate LTs with significant PF
fidelitiesin some cases. (c) The distribution of PF fidelities corresponding to
quiet wake (QW), or slow-wave sleep (SWS), when the number of firing time bins
utilized for calculation of each unit’s LT were matched between PRE and POST
viasubsampling the firing time bins, indicated significant difference between
PRE and POST within each event category (QW: P=2.0x1075;SWS: P=2.7x10"%,
two-sided Wilcoxon signed-rank tests with no correction for multiple
comparisons). (d) Left, the distribution of the mean sharpness of the posterior
probability distribution over position (quantified by the Gini coefficient,

see Methods) used in LT calculations for unitsineach event category. There was
asignificant effect of event category (p =1.5x10™", Friedman’s test) with both
QW and SWS had higher median Gini coefficients (i.e. sharper posteriors) than

REM (QW versus REM: P< 4.3 x107%%; SWS versus REM: P=3.8 x 10, two-sided
WSRT with no correction for multiple comparisons). The overlaid lines

(dots for sessions withno REM in PRE) connect median values corresponding
toindividual sessions. PREand POST also exhibited slightly different Gini
coefficients during QW (P=5.0 x10™) orREM (P=8.6 x10 ™) but not during
SWS (P=0.95), though the effect sizes of the difference were small (QW: 0.20;
SWS: 0.04; REM: -0.29).Right, the correlation between the PF fidelity and
posterior Gini coefficient for PRE (top) and POST (bottom) by pooling across all
event categories (bestlinear fits in black with 95% confidence intervalsin
shaded gray) was weak in both PRE and POST, and significant during POST
(P=0.004) butnot PRE (P=0.72), indicating that the sharpness of posteriors
was not amajor driver of differences between PREand POST LTs. (e) The
distributions of the number of bins with spikes used to calculate LTs in QW
ripples, SWSripples,and REM sleep during PRE or POST epochsin Fig. 2a.

The overlaid lines (dots for sessions withno REM in PRE) connect median values
corresponding toindividual sessions. (f) The distributions of the average
number of units that cofired with the learning unit when calculating LTs during
eachepoch. (g) Population vector correlation matrices (top) and cumulative
distributions of PF fidelity (bottom) for SWS and QW LTs during POST,
recalculated following subsampling of each unit’s SWS and QW firing bins to
match the number of firing bins during the corresponding REM periods.
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Extended DataFig.2| Theimpact of sleep oscillations on LT quality. (a) Top
row, the fraction of each sleep state in2-minute sliding windows during POST
fromasample session. Middle row, the power of 8-oscillations (1-4 Hz) in
2-second sliding windows (gray) across POST. Filled and empty dots indicating
SWSripple events with high (= median) or low (< median) §-oscillation power
for that session. Bottom row, similar to the middle panel, but for spindle power
(9-18 Hz) calculated in 500 ms sliding windows (gray). (b) In POST, but not PRE,
SWSripplesseparatedinto those occurring during high vs. low 8-oscillation
power (left) and high vs.low spindle power (middle) resulted in higher fidelity
whenthe oscillations were present at higher power. Whenwe spliteach 2-s
§-oscillation window into two 500 ms windows with higher and two 500 ms
windows with lower spindle power, toisolate theimpact of spindles at each
level of 6-oscillation power, we observed higher fidelity LTs for ripples that
occurred during the high spindle power subset. (¢) LTs calculated based on
events with high (= median) ripple (120-250 Hz) amplitude, multi-unit firing
rate, unit participationrate, or ripple event duration, all exhibited significantly
higher PF fidelity compared to those with low (< median) valuesin POST. In all
comparisonsin (b) and (c), LTs were calculated based on matched number

of bins and p-values (inset) were derived from Wilcoxon signed-rank tests.

(d) Distributions of the duration of ripple events obtained from each session
ineach dataset. (e) The distribution of 0-oscillation amplitude (z-scored over
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REM, left) and frequency (right) during the REM periods in POST (n = 813613
20-mstime bins pooled across all sessions), with individual session medians
(dots) and interquartile ranges (horizontal lines) superimposed. (f) PF fidelity
of LTsin POST REM calculated based on distinct subsets of 20-ms time bins
separated accordingto high and low 8-oscillation amplitude (left panel) or
frequency (middle panel) separated by the median valuesineach session.
There was asignificant effect of frequency (p = 0.02, two-sided WSRT, n = 660).
Similarly, REMLTs calculated based on separating windows according to 6 phase
(right panel) into trough (-1t/4 - t/4), ascending (/4 - 31/4), peak (31/4 - 51/4)
and descending (5m/4-7m/4) phase. Median PF fidelities significantly differed
across 0 phase (P=0.0015, Friedman’s test, n = 660) (g) We tested the effect of
different sized time bins on REM LT-PF fidelities in PRE (left) and POST (right).
While the effect was subtle and not significantly different across different sized
bins (Friedman’s test), LTs using 125 ms and 250 ms bin durations exhibited
significantly aligned LT-PF fidelities (median fidelities compared (one-sided)
tonull distributions obtained from 10* unitidentity shuffles without multiple
comparison corrections). (h) The posteriors used to calculate LTs exhibit
greater sparsity for larger binsizesinboth PREand POST REM. This is because
larger binsresultin more active neurons withineachbin, producingincreasingly
sharper posteriors (see equation (9), Methods).



Article

MAZE

HW“JWWW i WWA EES Rippe leamed tuning I
\

11 IIJI \J }III 72

Rat A, Linear maze

4 6 2 4 6
Time (hour) Time (hour)

M’“ i g

Rat G
Position (normalized)

4 6 4 6
Time (hour) Time (hour)

36Hz

S ™ i

Rat N
Position (normalized)

o

6 8
Time (hour)

" I W
§va"§ M IHIHH l\/|¥I,M| iIHiI,IhiI"I’KJ\IIwI‘IJ l lelwll\ 784z

)
=6

Rat S
Position (normalize:
ositio

4 6
Time (hour)

W i L T T T
ﬂnﬂl ‘l MW |\i|'|ll'l'l'goHZ

Rat T, L-shape maze
Position (normalized)

4 6 4 6
Time (hour) Time (hour)

Extended DataFig.3|Additional examples of the evolution of LTsfromPRE  units fromeachof 5different sessions (hypnogram ontop leftindicating the
to POST. Similar to Fig. 3a, heat maps of ripple LTs in sliding 15 min windows brainstate, quiet wake (QW), active wake (AW), rapid eye movement (REM)
from PRE through MAZE to POST (maze place fieldsingray onright) for6sample  sleep, and slow-wave sleep (SWS) at each timepoint).
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Extended DataFig. 4 |Placefieldfidelities do notstrictly correlate with
replayscore. (a) Distribution of replay scores in the different datasets
calculating as percentile against time shuffled bins. Median scores for different
epochs areshownwithdashed lines (chance medianscore = 50; see Methods).
(b) Ripple events were divided into quartiles according to replay score. Top
panels show the place fields and sets of LTs calculated based on low and high
quartile replay score events within PRE, MAZE, and POST. Bottom panels show
population vector (PV) correlations between position bins in the PFs versus
differentsets of LTs. (c) Distribution of PF fidelity for each ripple subset.
Median PF fidelities were significantly greater compared (one-sided) against
surrogate distributions (from 10* unitidentity shuffles, without multiple
comparison corrections) inall subsets during MAZE and POST but not during
PRE (PRE; P=0.86,P=0.67,P=0.49,P=0.06 for first to forth quartiles,
respectively. MAZE and POST: P<10*for all quartiles). (d) Place fields of
participating unitsin replays show differing amounts of overlap with the

decoded posteriors. Example events with high replay scores in PREand POST,
andlow replay scoresin POST showing posterior probability matricesand
corresponding spike rasters of units sorted by place field order. The middle
row depicts the mean correlation of the participating units’ place fields with
thedecoding posteriorin each timebin. The bottom panels show the place
fields and decoded positions of participating units for example time bins.
Note thateven bins with poor place-field coherence display sharp posteriors,
because of the multiplication rule in Bayes formula, whereby spatial tunings of
participating units are multiplied by each other. (e) Mean posterior correlation
of PFs and decoded positions show increased place-field overlapinboth low
and highscorereplaysin POST compared to PRE. Low and high replay score
events in PRE did not differ significantly (PRE low versus high: P=0.36; POST
low versus high: P=1.8 x107°%; POST high versus PRE high: P=1.1x1072%%, POST
low versus PRE high: P=1.1x107%%; two-sided Mann Whitney U Test). ***P< 0.001.
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Extended DataFig. 5| Additional details and variations on MAZE/reMAZE
analyses. (a) Place fields (PFs) from MAZE and reMAZE for all units used for
analysesinFig.5. (b) PF peak firing rates during MAZE and reMAZE and their
marginal histograms. Despite an apparent modest decrease in peak firing rates
duringreMAZE and disappearance or appearance of asmall subset of units
(orange dots), peak firing rates inreMAZE and MAZE remained significantly
correlated. Inthis and subsequent panels, best linear fitand 95% confidence
intervalsare overlaid with black line and shaded gray, respectively. (c) Thesame
as (b) but for spatial information between MAZE and reMAZE spatial tunings
across units. (d). POST LT fidelity to MAZE PFs (left) is correlated with the
similarity to the reMAZE PF. Likewise, POST LT similarity to reMAZE PFs (right)
iscorrelated with the similarity between MAZE and reMAZE PFs. (e) MAZE/
reMAZE similarity correlation with POST PF fidelity (as in Fig. 5f) separately for
unitswith lower (left) or higher (right) PF stabilities relative to each session’s
median. Higher POST fidelity was predictive of greater MAZE/reMAZE
similarity inboth sets. (f) Multiple regression separately for each panel directly
abovein (e) Theregressors were more predictive (higher R?) for units withmore
stable MAZE PFs, but POST LTs beta coefficients were similar between units
with lower or higher PF stabilities (both p values = 0.02). Pvalues were obtained
by comparing (one-sided) the R*and each coefficientagainst surrogate
distributions from10* unit-identity shuffles of reMAZE PFs. (g) PF fidelities of
POST LTs calculated exclusively based on slow-wave sleep (SWS; left) or quiet
wake (QW; right) ripple events both predicted similarity between MAZE and
reMAZE place fields. However, astronger correlation was observed for SWS
LTs. (h) Thesame multiple regression analysis for modeling reMAZE PFsasin

stronger
i.e.sharp

duringm

during ©-
allowed ustoadd datafrom an additional session (from Rat S) for which video
trackingwaslost during the reMAZE epoch). Left panel, the similarity of POST
LTs with MAZE 6-oscillation LTs predicted the similarity between MAZE and
reMAZE B-oscillation LTs. Right panel, POST LTs remained predictive of
reMAZE B-oscillation LTs in this control comparison. (k) The stability of POST
LTs (z-scored against unit-id shuffles, as in Fig. 3d) for units with MAZE PF peak
firing rate <1Hz (threshold used in this paper) were not significantly > 0.

(I) Inthe same set of units, the POST LTs did not display a significant correlation
withreMAZE PFs (left) but still showed a significant correlation with reMAZE
0-oscillation LTs (right). (m) The correlation with reMAZE 6-oscillation LT was
absent forlatePOST LTs. (n) Multiple regression analyses for modeling the
reMAZE PFs (left) or reMAZE 0-oscillation LTs (right) for these low-firing units
bothresultedinsignificant regression coefficients for POST LTs. *P<0.05,
**P<0.01,***P<0.001.

Fig.Sgbutwith theinclusion of POST SWSLTs (left panel), POST QW LTs (middle
panel), orboth (right panel), asregressors. While both SWS and QW POST LTs
were predictive of reMAZE (P<10*and P<0.01, Pvalues obtained by comparing
(one-sided) the R?and each coefficient against surrogate distributions from
10* unit-identity shuffles of reMAZE PFs), the POST SWS LTs offered the

prediction. (i) The Gini coefficients of POST LT’s (measuring sparsity,
ness of tuning) were significantly correlated with their similarity to

reMAZE placefields. This demonstrates that sparser (as opposed to more
diffuse) POST LTs display higher similarity with the upcoming place fields

azere-exposure. (j) Similar to Fig. 5f & 5g, but using tunings learned
oscillations (active periods) on MAZE and reMAZE. This analysis also
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Extended DataFig. 6 | Additional examples of the evolution of LTs from PRE
toreMAZE. Similar to Fig. 5h, heat maps of ripple LTs in sliding 15 min windows
from PRE through MAZE, POST, and latePOST for sample units from 4 different
sessions (hypnogramon top leftindicate the brain state, quiet wake (QW),
active wake (AW), rapid eye movement (REM) sleep, and slow-wave sleep (SWS)
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ateachtimepoint). MAZE and reMAZE place fields and LTs during PRE, POST,
andlatePOST are plotted ontheright of each panel, except for Rat S for which
we plot reMAZE 0-oscillation LTs (rather than reMAZE PFs) because video
tracking was lost during reMAZE for this session.



Article

Grosmark dataset b Soatial PE dist
— Giri dataset o patial istance . .
Miyawaki dataset Peak PF FR PF stablhty mformatlon from track center Burstiness POST firing rate
> 4 _,‘ s 0.02 43
*xx P <0.001 = i th 0.1
a o p<001 3 0.2 0_05_ 0.05
* p<0.05 o
250 S o 0
c
S, P ‘ 0 20 0 0
1 £25 /‘—/\ P=3.6x10 P=8.0x10 P=0.10
=0 0 0.32 0.5
(S ' : : H J J J J
Se PF distance from if 20 l//i A — ‘ x i
= a Z -
5 E track center (norm.) 8:@ NE A |22 A | -\. |
o= ae Y Y Y 1Y Y
&5 50 I :
s 2 /\_//]/\ T T T T T T
g 8 : g 0 Iov'viﬂ; h\{gh Iowﬁ/ B high Iow: high
a o XAty 0 032 05 E=2.6d FE2.0x10 -
0 ) POST LT distance from
3 30 50 track center (norm.) Ty
: . = 1
PF location (norm.) units no
g2 ¥ LI
=
o
0.5 == T T T T T T T T T T T
low high low high low high middle end low high low high
d Theta Theta Theta Animal f
amplitude  frequency phase velocity POST LTs =c,+ ¢, x average LT
. . +B,x PRE LTs
205 0.5+ I + B, x MAZE PFs
= 1 10024 « . = + B, % MAZE theta trough LTs
S ] 1 1 P LA B 057 R=0.51** + P, x MAZE theta peak LTs
S g 1 0 _ |~ I W _ W W N é 0.4 + B, x MAZE ripple LTs
o 0.6 9.0 24.2 == == o ok ek
= - Q s :
- . . T = A=/ g 03
£'0.5 + 0.05 4 2 = § 02 . o
2 0.25 4 Ep [0) 2
BNV N S R C_mlal-
o 1 1 1 w o .
g’ 05 5% ° 51 1 195 o o S !
-25 0525 5 110 0 50 o N O QD @ @ @
Theta amplitude Theta frequency  Animal Velocity -0.5 « Q\\OJ V’\\Q ,\o,\\\\ Q%&W /\‘)\\% \'}%\\‘ V/\a\
(Z-score) (Hz) (cms™) z&q’ & ((/Q N N
& 07 & \?ﬂ, RY) & N
-1 T 0 S
SN ° & & W
O Q;\Q' Ry ~é~® éf\\ V/\/(O W~
R

Extended DataFig.7| The correlationbetween the learned tuning of units
and theirintrinsicand MAZE tuning properties. (a) Left, the distribution of
locations of peak tuning across POST ripple LTs and maze place field (PFs; best
linear fitin black with 95% confidence intervalsin shaded gray). Right, the
marginal distributions of peak locations relative to the center of the track show
similar distributions between POST LTs (top) and PFs (bottom). (b) Relationship
between PF features and stability and fidelity of the POST LTs. First row,
distribution of each MAZE spatial tuning metric by pooling units across all
sessions (n =660 units). The medianand interquartile ranges corresponding to
individual sessions are depicted using overlaid lines. To analyze the connection
between the POST stability and fidelity with each MAZE spatial tuning metric,
the set of units within each sessionwas divided into low or high categories
according tothe median. Among the spatial tuning metrics, peak place field
firing rate (peak PF FR), and PF stability were predictive of the POST LT fidelity
and stability. We saw no effect from metrics such as spatial information or PF
distance fromthe track center. Cross-group comparisons used two-sided Mann
Whitney U Tests. (c) Similar analysis on unit firing characteristics indicates that
firingburstinessis notafactor driving LT stability or fidelity. Additionally,
higher firing rates during the POST ripples affected the stability of POST LTs
butnot their fidelity. Median and interquartile ranges corresponding to
individual sessions are superimposed with colored dots and lines. Cross-group
comparisons used two-sided Mann Whitney U Tests. (d) The distribution of
0-oscillation amplitude (z-scored), frequency, and velocity of the animal
observed during MAZE theta periods for asample session (top row) and for
overall distributions (bottom row) by pooling over all sessions (n=2250347
20-mstime bins). Median and interquartile ranges corresponding to individual

sessions are superimposed with colored dots and lines. (e) From left toright,

PF fidelity of MAZE 0-oscillation LTs calculated based on distinct subsets of
20-ms time bins into Low/High relative to session medians showed significant
effects for thetaamplitude (1% column) (P=0.01) or frequency (2" column)
(P=7.9x107"). Theimpact of 0 phase (3™ column) on MAZE 0-oscillation LTs
wasinvestigated by calculating the LTs based on distinct set of 20-ms time bins
accordingto 8-oscillation phase: Trough (-1t/4 to 1i/4), Ascend (1t/4 to 31/4),
Peak (31/4 to 51t/4), Descend (51/4 to 71/4). LTs associated with the trough and
descending phase of theta displayed higher PF fidelity than other theta phases
(cross-group comparison using Friedman’s test; P=2.2 x 10 with post hoc
comparisons within each pair; Trough vs. Ascend: P=2.1x107%; Trough vs. Peak:
P=2.2x107% Troughvs. Descend: P=0.002; Ascend vs. Peak: P=3.6 x107%;
Ascend vs. Descend: P=0.12; Peak vs. Descend: P=9.2 x107®). 6-oscillation
periodssplitaccording to the animal’s velocity (4™ column) during the
0-oscillation periods (p = 6.7 x107'%). These panels indicate significant
differences compared to chance levels (vs. unit-ID shuffle surrogates) within
eachgroup, as well as comparisons across groups (two-sided Wilcoxon
Signed-Rank Tests). (f) Multiple regression analysis revealed that learned
tunings calculated based on firing during MAZE 6-wave trough, but not 6-wave
peak, strongly predict POST learned tunings, along with MAZE ripple LTs
(8-wave peak LTs: P=0.35; 0-wave trough, PRE, ripple LTs,and MAZE PFs: P<107*).
Pvalues were obtained by comparing (one-sided) the R*and each coefficient
against surrogate distributions from10* unit-identity shuffles of POST LTs.
Results obtained by leaving outindividual sessions are superimposed with dots.
*P<0.05,**P<0.01,***P<0.001.
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Extended DataFig. 8 | Unitstability and isolation. (a) Sample units (from Rat U)
depicting mean spike waveform and unit stability assessed by spike amplitude,
isolation distance, and firing rate over threesleep epochs (PRE, POST, and
latePOST). Inclusion thresholds for isolation distance and firing rates are
shown with dashedlines. (b) The distribution of unit stability measures by
poolingacrossall unitsin sessions shown for each dataset. See Methods for
further details on unitinclusion criteria. Within-group comparisons used
two-sided Wilcoxon Signed Rank Tests. (c) The L-ratio was used to quantify the
degree of overlap inthe spike feature space between each pair of units. Each
scatterplot (top row) shows the spikes of the reference unit #20 (black) and
other units (colored) recorded on the same shankin an example recording
session from the Giri dataset. The axesin eachscatterplot correspondtothe

spike amplitude on two channels with maximal distinction between the pairs,
showing arange of overlap with unit #20. For example, unit #30 on the leftmost
inset showed almost no overlap, whereas unit19 on the rightmostinset
significantly overlapped. The L ratio (e.g. between unit #20 and the other units)
was obtained by calculating the probability of spikes from the second unit
belonging to the reference unit. An Lratio threshold of 10~ was applied to
include onlyisolated units for determining the LTs of each reference cell.
Corresponding mean spike waveforms (bottom row) provided for each pair of
unitsacrossrecording electrodes. (d) The cumulative distributions of L ratios
for thisexample session and across all sessions (top) (n =40207 unit pairs).

The L-ratios for each individual session (bottom), showing mean (dots), the full
range (whiskers) and interquartile range (boxes).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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|Z| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code

Policy information about availability of computer code

Data collection  Extracellular signals were recorded using OpenEphys and Intan RHD recording controller and recording interface softwares.
The animal's position was tracked using an Optitrack camera system and 3D position data was extracted using Motive software (Version
2.1.1). For the Miyawaki dataset, Cheetah (5.6.0) software interfacing with a Neuralynx Digitalynx DAQ system were used to obtain position
and electrophysiology data. The publicly available Grosmark dataset used an Ampliplex recording system with head-mounted LEDs.

Data analysis For the Giri dataset, the spikes were automatically sorted using SpyKING CIRCUS, followed by manual inspection using Phy. Miyawaki and
Grosmark datsets relied on Klustakwik for automatic clustering and Klusters fo rmanual inspection. Sleep state detection was performed using
TheStateEditor at https://github.com/buzsakilab/buzcode with the Chronux Toolbox (Version 2.12). Local field potential and spike analyses
including calculation of learned tunings and replay scores were performed using custom-written MATLAB and Python codes available at
https://github.com/diba-lab/Maboudi_et_al_2022.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The Grosmark dataset is publicly available at https://crcns.org/data-sets/hc/hc-11. Due to large file sizes, the Miyawaki and Giri datasets are available upon request
from the corresponding author.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment

Ethics oversight

N/A

N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

Simultaneous recording from large numbers (n) of units were possible with silicon probe recordings. No further sample size calculations were
performed. We incorporated all available datasets to support statistics and where possible displayed results for individual datasets.

Three recording sessions from the publicly available Grosmark dataset were excluded due to low stability and number of recorded units prior
to further analyses. One reMAZE session from rat S was excluded from the main analyses reported in Figure 5, because the position data
during the reMAZE exposure was lost during the recording.

We used three different datasets recorded independently at different institutions and by different experimenters. In all applicable instances
all three datasets replicated findings and established the robustness of the reported observations. Each of the datasets is indicated separately
on figure panels, where appropriate.

Animals and recorded hippocampal units were randomly selected from their populations. The PRE/MAZE/POST/reMAZE design required
sequential recordings from the same animals, precluding the possibility of randomization the order of POST and PRE. Where appropriate, we
used shuffle analyses to randomize the data.

The analyses and data collection were performed by different personnel. The custom analyses and sequential design prevented investigators
from remaining blind to the group allocations.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
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X |:| Palaeontology and archaeology |:| MRI-based neuroimaging
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Animals and other research organisms
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Laboratory animals Four adult Long-Evans rats , ages 8 to 12 weeks old, were used in new recordings in this study (Giri dataset). Previously published
datasets incorporated, Miyawaki and Grosmark datasets, included three and five Long-Evans rats, respectively, ages 8 to 14 weeks
old.

Wild animals No wild animals were used in this study.

Reporting on sex Of the total 11 rats that provided data used in this study, 2 were female (Rat N and Rat S, Giri dataset) and the remainder were male.
As no sex differences were apparent or expected in this study, no comparison of the effects between sexes were planned or
performed.

Field-collected samples  No field collected samples were used in this study.

Ethics oversight All procedures involving animals followed protocols approved by the Animal Care and Use Committee (ACUC) at the University of
Michigan, and conformed to guidelines established by the United States National Institutes of Health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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